Three-pathway combination for glutathione biosynthesis in Saccharomyces cerevisiae

نویسندگان

  • Liang Tang
  • Weiwei Wang
  • Wenlong Zhou
  • Kai Cheng
  • Yan Yang
  • Minzhi Liu
  • Kedi Cheng
  • Wei Wang
چکیده

BACKGROUND Glutathione (GSH), a pivotal non-protein thiol, can be biosynthesized through three pathways in different organisms: (1) two consecutive enzymatic reactions catalyzed by γ-glutamylcysteine synthetase (Gsh1 or GshA) and glutathione synthetase (Gsh2 or GshB); (2) a bifunctional γ-glutamylcysteine synthetase/glutathione synthetase (GshF); (3) an alternative condensation of γ-glutamyl phosphate synthesized by γ-glutamyl kinase (Pro1 or ProB) with cysteine to form γ-glutamylcysteine which was further conjugated to glycine by glutathione synthetase. The Gsh1 and Gsh2 of conventional GSH biosynthetic pathway or the bifunctional GshF reported previously have been independently modulated for GSH production. This study developed a novel three-pathway combination method to improve GSH production in Saccharomyces cerevisiae. RESULTS A bifunctional enzyme GshF of Actinobacillus pleuropneumoniae was functionally expressed in S. cerevisiae and Pro1 in proline biosynthetic pathway was exploited for improving GSH yield. Moreover, two fusion proteins Gsh2-Gsh1 and Pro1-GshB were constructed to increase the two-step coupling efficiency of GSH synthesis by mimicking the native domain fusion of GshF. The engineered strain W303-1b/FGP with three biosynthetic pathways presented the highest GSH concentration (216.50 mg/L) and GSH production of W303-1b/FGP was further improved by 61.37 % when amino acid precursors (5 mM glutamic acid, 5 mM cysteine and 5 mM glycine) were fed in shake flask cultures. In batch culture process, the recombinant strain W303-1b/FGP also kept high efficiency in GSH production and reached an intracellular GSH content of 2.27 % after 24-h fermentation. CONCLUSIONS The engineered strains harbouring three GSH pathways displayed higher GSH producing capacity than those with individually modulated pathways. Three-pathway combinatorial biosynthesis of GSH promises more effective industrial production of GSH using S. cerevisiae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation of indigenous Glutathione producing Saccharomyces cerevisiae strains

Background: Glutathione (GSH) is a non-protein thiol compound, which plays an important role in the response to oxidative stress and nutritional stress. The aim of this study was to isolate indigenous S. cerevisiae strains capable of effectively produce GSH. Methods: One hundred-twenty sweet frui...

متن کامل

Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite.

Arsenic is ubiquitously present in nature, and various mechanisms have evolved enabling cells to evade toxicity and acquire tolerance. Herein, we explored how Saccharomyces cerevisiae (budding yeast) respond to trivalent arsenic (arsenite) by quantitative transcriptome, proteome, and sulfur metabolite profiling. Arsenite exposure affected transcription of genes encoding functions related to pro...

متن کامل

Biosynthesis of Zinc Oxide Nanoparticles using Intracellular Extract of Saccharomyces cerevisiae and Evaluation of its Antibacterial and Antioxidant Activities

Introduction: Attention to the biosynthesis of nanoparticles (NPs) has been increased recently since they are cost-effective, eco-friendly, and potential alternatives to chemical and physical methods. This study aimed to synthesize zinc oxide nanoparticles (ZnO NPs) using an intracellular extract of Saccharomyces cerevisiae. Moreover, it was attempted to evaluate their antibacterial and antioxi...

متن کامل

Genetic variation in the cysteine biosynthesis pathway causes sensitivity to pharmacological compounds.

Complex traits are the product of multiple genes with effects that depend on both the genetic and environmental background. Although this complexity makes a comprehensive genetic analysis difficult, identification of even a single gene provides insight into the biochemical and/or signaling pathway underlying a trait. However, it is unknown whether multiple pathways, and consequently multiple ge...

متن کامل

Investigation of blood serum enzymes and antioxidant system of liver in grey mullet ,Mugil cephalus Linnaeus 1758, fed with different levels of Saccharomyces cerevisiae yeast

The potential use of dietary probiotics to enhance the immunity and health of aquatic animals has recently attracted intensive attention. The purpose of this study was to investigate the effect of different levels of Saccharomyces cerevisiae yeast  on blood serum enzymes (aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP)) and antioxidant systems (S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2015